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Abstract

A ‘‘mapping trajectory pursuit (MTP)’’ is introduced to improve the cell mapping techniques based on spatial

Poincaré sections. Such an improvement enables the cell mapping method to determine the exact properties of all cells

with less computer memory and computational time. For the purpose of prediction of the stability boundary as a

function of initial conditions (domains of attraction), an initial condition region is defined besides the domain of

interest. The proposed CM method is used to analyse the aeroelastic behaviour of an aeroelastic system with bilinear

structural nonlinearity. Different types of motions including damped stable motion, limit cycle oscillation, complicated

periodic motion, chaotic motion and divergent flutter are determined as a function of initial conditions (domains of

attraction). The results compare well with that from stability analysis of the system. The bifurcation diagrams are also

obtained using the method to reveal the influence of disturbances on the dynamical behaviour of the system over a

broad range of air speed.

r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

A nonlinear dynamical system can have several qualitatively distinct steady state solutions depending on the initial

conditions. A global behaviour analysis of such systems by direct numerical integration is often extremely time-

consuming and error prone. For this reason, a ‘‘simple cell mapping’’ (SCM) method was proposed by Hsu (1980) and

Hsu and Guttalu (1980). The method is based on the discretization of the state space of a dynamical system into small

regions called cells, and the subsequent construction of an integer-type mapping of these cells. Many computational

techniques based on the concept of cell mapping have also been developed, e.g. ‘‘generalized cell mapping’’ (GCM) by

Hsu (1981, 1982, 1987) and ‘‘interpolated cell mapping’’ (ICM) by Tongue and Gu (1988).

Despite their advantages in comparison with direct integration, these methods are quite computer time and computer

memory consuming, when applied to high-order dynamical systems. A further development to reduce the amount of

cells used in the calculation led to the introduction of ‘‘Poincaré-like simple cell mapping’’ (PLSCM) by Levitas et al.

(1994) and ‘‘Poincaré linear interpolated cell mapping’’ (PLICM) by Levitas and Weller (1995), which combine the use

of spatial Poincaré sections with SCM and ICM, respectively. The introduction of Poincaré sections allows considerable
e front matter r 2004 Elsevier Ltd. All rights reserved.
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reductions in the number of cells involved and therefore appears to be appropriate for the study of the multi-degree-of-

freedom dynamical systems. However, the solutions of the system are approximate due to the error incurred at the

beginning of every iteration. Either the values at the mid-points of cells or at the interpolated points of the cell vertices

are used as the initial values of the successive integrations rather than at the actual mapped position. Thus the limitation

of the small cell size to minimize the numerical error prevents the application of the methods to high-dimensional

systems. For interpolated-type methods, the cells generated may wrongly be determined as ‘‘sink cells’’ even if the

trajectory leaves the domain of interest only temporarily and will return back later during iterations.

Recently, many investigations have been made for structurally nonlinear aeroelastic systems. Lumped nonlinear

parameters including freeplay, bilinear and cubic stiffness, have been known to have significant effects on the aeroelastic

responses of aerosurfaces (Kim and Lee, 1996; Librescu and Chiocchia, 2003; Price et al., 1994; Singh and Brenner,

2003; Tang et al., 1998; Yang and Zhao, 1990; Zhao and Yang, 1990). Depending on the degree of nonlinearity, the

behaviour of the airfoil was shown to be strongly dependent on the initial conditions. In fact, the influence of the initial

conditions on the behaviour of airfoils is one of the main tasks of aeroelastic analysis. The results are referred to as the

stability boundary in terms of the initial conditions (Price et al., 1994), boundary for different types of motion (Yang

and Zhao, 1990), domains of attraction (Levitas et al., 1994; Levitas and Weller, 1995), or simply as parameter maps

(Kim and Lee, 1996). Because the cell mapping techniques appear appropriate for the prediction of the boundaries of

different types of motion depending on initial conditions, they have been applied in many engineering problems,

including the global analysis of bifurcations of the Duffing–van-der-Pol oscillators under both additive and

multiplicative random excitations (He et al., 2004), the global analysis of climate predictability (Mu et al., 2004), the

optimal control of autonomous dynamical systems (Zufiria and Martinez-Marin, 2003), nonlinear vibrations of a rotor

system with bearing clearance ( Karlberg and Aidanpaa, 2003), multiple steady state solutions of a nonlinear system

with time-delay (Raghothama and Narayanan, 2002) and the global dynamics of a damped flexible connecting rod

(Chen and Chian, 2001). Nevertheless, to the authors’ knowledge, the use of these techniques in the aeroelastic analysis

of airfoils has not been reported yet.

In the present paper, a process of ‘‘mapping trajectory pursuit’’ (MTP) is incorporated into the cell mapping

techniques using spatial Poincaré sections. The initial condition region is defined for the purpose of constructing the

domains of attraction. Finally, it is used to analyse the flutter of a binary aeroelastic system with bilinear structural

nonlinearity in torsion producing the initial condition boundaries of different types of motion.
2. Improvement on the cell mapping method

Consider an N-dimensional dynamical system described by the first-order ordinary differential equations

dx

dt
¼ F ðxÞ; F : RN ! RN (1)

or

dx

dt
¼ F ðx; tÞ; F : RN � R ! RN ; F ð�; tÞ ¼ F ð�; t þ TÞ; (2)

where T is the period of the time-periodic system (2). In SCM and ICM, Eq. (1) or (2) is first transformed into point-to-

point mapping by numerical integration over a time interval t such that

xðn þ 1Þ ¼ PðxðnÞÞ; P : RN ! RN ; (3)

which means that x(n), a point in the state space, is mapped by P after a period of time into a point x(n+1). For system

(2), mapping (3) is defined as time Poincaré mapping when t ¼ T. Then, cells in the state space can be defined according

to the procedure described in Hsu (1980), Hsu and Guttalu (1980) or Hsu (1987) on the basis of the mapping (3).

2.1. Concept and algorithm

Instead of time sections with interval t; one can obtain the point-to-point mapping (3) on a spatial Poincaré section S;
which is an (N�1)-dimensional hyperplane in the RN state space for both the autonomous system (1) and

nonautonomous system (2). The hyperplane is transversal to the trajectories of the system. In PLICM (Levitas and

Weller, 1995), only autonomous systems were considered. Such a procedure results in P : S ! S; and reduces

the dimension of the space under study by keeping one of the coordinates constant. That coordinate is referred to as the

Poincaré coordinate. The cell mapping is then applied to the intersecting points obtained on S: Selecting xN as the
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Poincaré coordinate, the cell z ¼ ðZ1;Z2; . . . ;ZN�1Þ contains all points x ¼ ðx1; x2; . . . ; xN�1Þ 2 S which satisfy

Zi �
1

2

� �
hipxio Zi þ

1

2

� �
hi; i ¼ 1; 2; . . . ;N � 1; (4)

where hi is the cell size in the xi-direction. Zi is an integer, constructed by

Zi ¼ Int
1

hi

xi þ
1

2

� �
: (5)

The main idea of the proposed approach is to integrate Eq. (1) or (2) numerically with initial conditions x0, taken from

the initial condition regionQ as explained later, to obtain x1 which is the first intersection point of the trajectory with S;
then obtain x2 by taking x1 as the initial condition, and x3, x4, y, in the similar way. Cells z1, z2, y are constructed

according to Eq. (5) simultaneously with respect to x1, x2, y . Different from the existing cell mapping methods in

which a cell is represented either by its mid-point or by an interpolated point, we record xjðjX1Þ as the representative

point of cell zj and use it to determine the state of the trajectory. To record the coordinate values of xj ; an (N�1)-

dimensional array R(z) is introduced. In component form, Riðz
jÞ ¼ x

j
i ; i ¼ 1; 2; . . . ;N � 1: Besides, the three numbers

defined in SCM, the group number Gr(z), periodicity number P(z) and the steps number S(z) are also used.

Similar to the other cell mapping methods (Hsu, 1980; Hsu and Guttalu, 1980), the domain of interest S 
 S; inside
which the dynamics of the system is investigated, is defined and divided into cells to construct the cell space as needed.

To determine the stability boundary in terms of the initial conditions or domains of attraction, an initial condition

region Q is defined to cover all initial conditions to be investigated. Q is a subspace of RN from one to N-dimension, so

it can be different from S both in size and/or in dimension. Q is also divided into a number of ‘‘cells’’ as needed. But the

cell sizes and coordinate directions in Q can be different from those in S. Taking N ¼ 3; for example, as presented in

Fig. 1, S 
 R2 is defined by x2 ¼ x2: The mid-point of a ‘‘cell’’ in Q is taken as the initial conditions x0. The integrating

trajectory starting from x
0 intersects one-sidedly with S at x1,x2,y successively, constituting the point-to-point maps.

The construction of cells both in S and Q is not shown in Fig. 1.

To apply the proposed method in determining the domains of attraction, the initial values of integration are taken

from the initial condition region Q according to a rule set at the beginning. After an initial condition is chosen, the cells

are constructed together with the numerical mapping points in S. The first processing sequence ends when the global

properties of all cells are determined. The next sequence begins with the next set of initial condition. The application

ends after all points (or cells) inside the initial condition region Q have been dealt with.

The four possibilities in the processing sequence zj are considered below.

(i) The newly generated cell zj is virgin. In this case, xj is recorded as the representing point of zj and as the initial

condition for the continuing integration in the present sequence. In SCM, each cell is represented by its mid-point,

which also serves as the initial condition for further numerical integration.

(ii) The newly generated cell zj has appeared before in the present sequence. A new periodic motion is found in this

sequence only when the distance between the newly obtained point xj and the representing point of the cell zj ;
RðzjÞ � xj
�� ��; is less then a given small value d1. When this happens, the processing sequence is terminated and all cells in

this sequence are assigned to the newly obtained periodic motion. Otherwise, xj is taken as the representing point of the

cell zj and the procedure is continued.

(iii) The newly generated cell zj has appeared in one of the previous processing sequences. The current processing

sequence is attractive to a cell with known global properties only when RðzjÞ � xj
�� �� is less then a given small value d2. In
Q
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such case, the processing sequence is terminated and the property of each cell in this sequence is the same as that of zj :
Otherwise, the procedure is continued but RðzjÞ is kept unchanged.

(iv) A cell is mapped outside S. We do not construct cell for x̄j outside S but continue the numerical integration. The

mapped points can either return into S again or leave farther and farther away from S implying divergence. In the

former case, the mapped points inside S are dealt with continually in the same ways as in (i), (ii) or (iii). In the latter

case, the processing sequence is terminated and all cells in this sequence inside S are assigned as ‘‘sink cells’’.

2.2. Some details of the algorithm

In carrying out the proposed approach, the following measures are used.

(i) As already mentioned, point-to-point mappings are performed by intersections of the trajectory of the system

evolution with the hyperplane S: The intersection occurs if two successive output points from the integration in the

Poincaré direction lie on the opposite sides of S at time ti and ti+1. Then the intersecting point x̄j is achieved by

returning to the point x(ti) and by integrating over a fine time step Dt. Generally, to ensure the repetitive intersections in
the transient and steady state evolution trajectories, section S should be located at a zero value of velocity coordinate if

the system has stable equilibrium points or stable limit cycles (Levitas and Weller, 1995). Taking S ¼ fxN ¼ 0g for

example, a negative value of the product of xN(ti) � xN(ti+1) and a negative value of xN(ti) at the same time can indicate a

one-sided intersection of the trajectory with S. Then the fine time step Dt represents the distance in t direction from ti to

the intersecting point of the line connecting (ti,xN (ti)) and (ti+1,xN (ti+1)) with t coordinate in (t,xN) plane:

Dt ¼
jxN ðtiÞjtiþ1 þ xN ðtiþ1Þti

jxN ðtiÞj þ xN ðtiþ1Þ
: (6)

(ii) In each processing sequence, the cell zj ¼ ðZ1;Z2; . . . ;ZN�1Þ is also recorded as function of j by N�1 one-

dimensional temporary arrays fCiðjÞ ¼ Zi; i ¼ 1; 2; . . . ;N � 1g: When assigning global properties to all cells in the

processing sequence before termination, there is no need to integrate the system from the initial conditions again,

contrary to SCM, but just read from fCiðjÞg to obtain the cells. Even in dealing with a new periodic motion, the period

of the motion can also be found by checking the coordinates from the last cell backward until they meet again.

(iii) Generally, d1 should be set quite small to determine a steady state motion in a numerical integration to assure a

periodic motion to be found accurately. This means that a cell can be met many times before the present sequence is

terminated and its character is determined. The cell can either be the component of the newly found periodic orbit or be

the domain of attraction of the orbit but not its component. Comparatively, a transient motion approaching to an

existing periodic motion can be found much earlier. So d2 can be much larger than d1.

(iv) A trajectory may leave and return into the region S several times before being attracted to a periodic motion.

When the mapping points are outside S, the sequence number j is still increasing but CiðjÞ is recorded as a fixed number,

for example Zimax+1, in case 1pZipZimax, i ¼ 1; 2; . . . ;N � 1: This ensures that (a) the character of a new periodic

motion can still be correctly determined when part of its intersection points in steady state are outside S; and (b) the

determined properties can be assigned to all cells inside S.

2.3. Remarks

We define the proposed process as ‘‘mapping trajectory pursuit’’(MTP) because the actual positions of mapped

points on S represent the cells which are followed through, even when leaving the domain of interest S until the final

determination. Comparing with other existing cell mapping-based methods, the main advantages of the proposed

approach can be summarized below.

(i) In the MTP process, the size of S can be set much smaller than that in the other methods, because it is unnecessary

to contain the entire steady state orbits of the systems in the RN state space, but only all or part of their intersecting

points on S: In contrast, the cell size can be reasonably larger because the criterion applied in the numerical integration
procedures is used to determine whether a newly mapped point is the representing point of the cell. So, the larger cell

size would not produce much error in the determination of the periodic solutions. These two aspects mean that the

amount of the required cells in the calculation can be reduced substantially. Note that such a reduction is based on the

application of the spatial Poincaré sections. This makes the proposed approach favorable for the global study of high-

order dynamical systems.

Indeed, computer memory is needed for the N�1 (N�1)-dimensional arrays R(z) to record the coordinates of x.

Supposing the amount of cells is N̄ ; there are totally (N�1)N̄ elements included in R(z). But comparing with the great

reduction in the amount of cells, the introduction of the extra ðN � 1ÞN̄ elements is tolerable.
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(ii) Due to the reduction in the amount of cells, the computer time can be reduced considerably. More time is needed

to cope with a new periodic motion due to the application of ‘‘exact’’ solution. It is only a little portion of the whole

procedure in the global analysis. On the other hand, the time increase can be compensated by the introduction of fCig

by which the time spent in the property assignments is greatly shortened.

(iii) In SCM and ICM procedures, a large amount of data is required to be manipulated because they display the

detailed information of the system in RN state space. But in the proposed method, one deals only with the intersecting

points on the Poincaré section requiring fewer amounts of data. MTP pays little attention to the detailed information of

the system; hence it is appropriate for the determination of the stability boundary as a function of the initial conditions,

or domains of attraction. It is also easier to distinguish two periodic motions on the (N�1)-dimensional Poincaré

section than that on the N-dimensional state space when their orbits are near to each other.

In determining the stability boundary as a function of the initial conditions, the whole process can end if the

properties of all points in Q are determined even when some cells inside S have not been dealt with.
3. Analysis of a nonlinear aeroelastic system

Consider a rigid wing of constant chord pivoted at its root in bending and torsion when there is no stiffness coupling

between the motions, Fig. 2. The equations of motion of the two-degree-of-freedom aeroelastic system are described

(Hancock et al., 1985) as

A €q þ ðrVBþDÞ _q þ ðrV2Cþ EÞq ¼ 0; (7)

where q ¼ ðg; yÞT; g is the bending angle (+ve wing tip down), y the torsional angle (+ve nose up), r the air density, and
V the air (or the wing) speed. The matrices A, B, D, C and E are the mass, aerodynamic damping, structural damping,

aerodynamic stiffness and structural stiffness matrices, respectively, which are

A ¼
I g I gy

Igy Iy

" #
; B ¼

cs3a
6

0

� c2s2ea
4

� c3s
2

M _y

2
4

3
5; C ¼

0 cs2a
4

0 � c2sea
2

2
4

3
5; E ¼

kg 0

0 kBLðyÞ
y

" #
;

where I g; Iy and I gy are the moments of inertia in bending, in pitching and the corresponding product of inertia,

respectively; kg is the bending stiffness. The parameters c, s, e and a are the chord length, the wing semi-span, the

nondimensional distance of flexural axis from aerodynamic center and the two-dimensional sectional lift curve slope,

respectively. Eqs. (7) are derived using quasi-steady aerodynamics with the addition of the nondimensional

aerodynamic torsional damping derivative M _y representing the main unsteady aerodynamics effect. For simplicity,

the structural damping D is ignored. This approximation is not serious here as we are using the system as a tool to

demonstrate the use of the proposed cell mapping method.

In this paper, kBL is a bilinear stiffness in torsional direction such that, in Fig. 3,

kBLðyÞ ¼

K 0
yy jyjog;

gK 0
y þ ðy� gÞKy y4g;

�gK 0
y þ ðyþ gÞKy yo� g:

8><
>: (8)
Fig. 2. Schematic of the rectangular wing model.
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Fig. 3. Bilinear stiffness in the torsional direction.
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Introducing the dimensionless variables

t̄ ¼ oyt; ḡ ¼
g
g
; ȳ ¼

y
g
; q̄ ¼ ðḡ; ȳÞT

and the dimensionless matrices Ā; B̄; C̄ and Ē;

Ā ¼

1
I gy

I g

I gy

Iy
1

2
6664

3
7775; B̄ ¼

cs3a

6Ig
0

�
c2s2ea

4oyIy
�

c3sM _y

2oyIy

2
6664

3
7775; C̄ ¼

0
cs2a

4o2
yI g

0 �
c2sea

2o2
yIy

2
66664

3
77775; Ē ¼

og

oy

� �2

0

0
k̄BLðȳÞ

ȳ

2
6664

3
7775;

where oy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ky=Iy

p
; og ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Kg=I g

p
; and k̄BLðȳÞ is the dimensionless bilinear stiffness defined by

k̄BLðȳÞ ¼

kȳ jȳjo1

ȳþ k � 1 ȳ41

ȳ� k þ 1 ȳo� 1

8><
>: ; k ¼

K
0

y

Ky

 !
; (9)

one gets the dimensionless equation of motion of the system in the form of Eq. (6) with D ¼ 0 after dropping all

overbars for convenience.

In the following analysis, we take the system parameters as

s ¼ 10m; c ¼ 3m; a ¼ 2p; m ¼ 200kg; e ¼ 0:25; r ¼ 1:225 kg=m3; M _y ¼ �0:1;

xcm ¼ 0:6c; ycm ¼ 0:6s; xf ¼ 0:5c; I g ¼
ms2

3
; Iy ¼ mc4=3x2=3

cm þ mðxcm � xf Þ
2;

Igy ¼ mðxcm � xf Þ0:45s; kg ¼ ð4pÞ2I g; ky ¼ ð20pÞ2mc2=12;

where m is the mass of the wing, ðxcm; ycmÞ the coordinates of center of mass, and xf the distance of flexural axis from

the wing leading edge, respectively.

3.1. The equilibrium position

The equilibrium positions of system (7) are obtained by setting all time derivative terms to zero

ðrV2Cþ EÞq ¼ 0: (10)

Due to the characteristics of bilinear stiffness, the system has two kinds of equilibrium positions:

(i) trivial equilibrium position: taking kBLðyÞ ¼ ky (jyjo1) and solving Eq. (10) results in q ¼ 0 ðg ¼ y ¼ 0Þ;
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(ii) nontrivial equilibrium positions: taking kBLðyÞ ¼ yþ k � 1 (y41) or kBLðyÞ ¼ y� k þ 1 (yo1), one gets the

solutions of (10), ðg1; y1Þ and ðg2; y2Þ; respectively, as

g1;2 ¼ �
rcs2að1� kÞV2

4Kg 1�
rc2sea

2Ky
V2

� � ; y1;2 ¼ �
1� k

1�
rc2sea

2Ky
V2

:

8>><
>>: (11)

The relationships of y1 with the wing speed V for k ¼ 0:1 and 0.3 are shown in Fig. 4. The curves intersect with line

y1 ¼ 1 at V 0
F : Obviously, Eq. (10) is effective only when V4V 0

F :

3.2. Flutter analysis

Letting kBLðyÞ ¼ ky; we rewrite Eq. (7) as

_g

€g
_y
€y

2
6664
3
7775 ¼

0 1 0 0

a1 a2 a3 a4

0 0 0 1

b1 b2 b3 b4

2
6664

3
7775

g

_g

y
_y

2
6664
3
7775; (12)

where

a1 ¼ �
hykg

o2
y

; a2 ¼ �
racs

12oy
ð3ceshgy þ 2s2hyÞV ;

a3 ¼ khgyIy �
racs

4o2
y

ðshy þ 2cehgyÞV
2; a4 ¼ �

rsc3M _y

2oy
hgyV ;

b1 ¼
hgykg

o2
y

; b2 ¼
racs

12oy
ð3ceshg þ 2s2hgyÞV ;

b3 ¼ �khgIy þ
racs

4o2
y

ðshgy þ 2cehgÞV
2; b4 ¼

rsc3M _y

2oy
hgV ;

in which

hg ¼
I g

I gIy � I2gy
; hy ¼

Iy

I gIy � I2gy
; hgy ¼

Igy

I gIy � I2gy
:

The eigenvalues of the coefficient matrix of Eq. (12) satisfy the following characteristic equation:

l4 þ b1l
3
þ b2l

2
þ b3lþ b4 ¼ 0; (13)

where b1 ¼ �ða2 þ a4Þ; b2 ¼ a2b4 � a4b2 � a1 � b3; b3 ¼ a1b4 þ a2b3 � a3b2 � a4b1; b4 ¼ a1b3 � a3b1: According to

Routh’s criteria, when the following conditions are satisfied (on condition that b140 which is definitely true for
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system (7)):

b1b2b3 � b21b4 � b23 ¼ 0: (14)

The flutter motion (limit cycle oscillation or LCO) with nondimensional frequency

oF ¼

ffiffiffiffiffi
b3
b1

s
; (15)

will be generated from the trivial equilibrium position q ¼ 0 when V4VF ; where VF is the solution of Eq. (14) and

defined as the flutter speed. The relationships of VF and oF with the ratio k ¼ K 0
y=Ky are shown in Fig. 5. Calculations

reveal that there is no real solution VF from Eq. (13) in case kokLE0.38. So, the trivial equilibrium position of Eq. (7)

is locally stable and no flutter will be excited under disturbances. But after a critical value VLT is exceeded for the wing

speed V, LCOs can still be excited from the trivial equilibrium position under larger disturbances. The relationship of

VLT with k is also roughly depicted in Fig. 5, which looks like the continuation of VF. This problem will also be

considered later using the proposed CM method. The LCOs, one for the system with k ¼ 0:5; V4VF ¼ 12:2m=s and
under small initial condition (T2), and another for k ¼ 0:1; V4VLT � 10m=s and under a rather larger initial condition
(T1), respectively, are shown in Fig. 6. Obviously, the LCOs in the two cases are symmetrical to the trivial equilibrium

position q ¼ 0:
As mentioned above, there are two nontrivial equilibrium positions, ðg1; y1Þ and ðg2; y2Þ when VXV 0

F : In fact, their

existence implies instability of the trivial equilibrium position, q ¼ 0 if the local stability of the trivial equilibrium state

continued until V overpasses V 0
F under small disturbances. So, the relationship of V 0

F and k has actual meaning only for

kokL; as shown in Fig. 5. When the dimensionless displacement in the y direction is increased to greater than 1, the
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F (the nontrivial equilibrium positions calculated by Eq. (11)).
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divergent motion starting off from q ¼ 0 can be suppressed because the stiffness of the system for yj jX1 is larger than

that for yj jo1ðKy4K 0
yÞ: So the steady state motion of the system will form a LCO around one of the nontrivial

equilibrium positions, but unsymmetrical in the y direction because of the different values of Ky from K 0
y; as shown in

Fig. 7.
4. Application of the improved CM method for flutter analysis

As mentioned in Section 2, the hyperplane S should be located at a zero value of the velocity coordinate to cope with

the stable equilibrium points and limit cycles. In the following analysis, we take _y ¼ 0 as S and take the one-sided

intersections when the trajectory passes through S from negative _y to positive _y as the point-to-point maps (3). The cell
sizes are determined by h1 ¼ 0:05; h2 ¼ 0:02 and h3 ¼ 0:05 � 0:1 in the g; _g and y direction, respectively. The domain of
interest S on S should be chosen to cover at least part of, if not all, the intersecting points of the steady state trajectory

on S: The range of S over g is (�1.5, 1.5) and over _g is (�0.6, 0.6). In the y direction, the range can be adjusted to let the
amount of the cells to be as small as possible. Letting d̄ ¼ h21 þ h22 þ h23

� �
=2

� �1=2
; we take d1 ¼ 0:01 � 0:03d̄ and

d2 ¼ 0:1 � 0:3d̄: For simplicity, the initial condition region Q includes only the initial conditions in the y direction, and
we always have gð0Þ ¼ 0; _gð0Þ ¼ 0:

4.1. Determination of domains of attraction

In case kokL; the trivial equilibrium position of the system is locally stable for VoV 0
F ; so the motion is damped

under small disturbances as initial conditions. But LCOs can be excited by larger disturbances when V4VLT. Letting

k ¼ 0:1; the domains of attraction are determined using the proposed CM method as in Figs. 8 and 9, which show the

different motions as functions of V � y(0), V � _yð0Þ and yð0Þ � _yð0Þ: The motions are classified as: damped stable

motion to the trivial equilibrium position, limit cycle oscillation (LCO), complicated periodic motion with period n

(nX2), chaotic motion, and divergent flutter. Referring to the y coordinate, the LCOs are either symmetric centered at

y ¼ 0 or asymmetric centered at y ¼ þ1 or y ¼ �1: Though the proposed method is mainly appropriate for dealing
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Fig. 8. Domains of attraction: (a) torsion angle versus wing speed (gð0Þ ¼ _gð0Þ ¼ _yð0Þ ¼ 0); (b) torsion velocity versus wing speed

(gð0Þ ¼ _gð0Þ ¼ yð0Þ ¼ 0). +, damped stable motion; � , LCO; n; period 2 motion; �; periodic motion with period greater than 2; r;
chaotic motion; blank, divergent motion.

Fig. 9. Domains of attraction for torsion velocity versus torsion angle (k ¼ 0:1) for: (a) V ¼ 15m=s; (b) V ¼ 30m=s; (c) V ¼ 45m=s:
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with periodic motions with limited periods, it can still be used to determine a chaotic motion by taking it as a periodic

one with a relatively long period, for example, longer than 100, or by finding a nondivergent motion without periodicity

after 200 iterates on S: For the aeroelastic problem in this paper, chaotic motions at one or another fixed wing speed

were found with period over a range from 100 to 200 on the spatial Poincaré. The results were also confirmed by the

exact numerical integration and FFT analysis. The Lyapunov exponent is not reliable because of the nonsmooth nature

of the bilinearity as mentioned in Price et al. (1994).

In Fig. 8, the domains of attraction in the planes (V ; yð0Þ) and (V, _yð0Þ) are displayed over a broad range of the

airspeed V. The Qs are one-dimensional spaces defined in the y and _y direction, respectively. Fixing wing speed V,

the initial values are taken from Qs successively from the lowest value to the highest one with certain intervals. Small

initial conditions, say jyð0Þjo1:5 or j_yð0Þjo0:6; result in damped motions to the trivial equilibrium position for

VoV 0
F ¼ 26:2m=s; asymmetrical LCOs over the velocity range 26.2oVo43m/s, and complicated periodic motions

with period X2 and chaotic motion over the approximate velocity range 43oVo52m/s. The divergent flutter happens

at V � 52m=s: For large initial conditions, jyð0Þj41:5 or j_yð0Þj40:6; symmetrical LCOs occur when V4VLT � 10m=s
(see the boundary line VLT � k in Fig. 5). However, the motion becomes divergent under larger disturbances for

VX18m=s:
Similar to Fig. 8, the domains of attraction in the two-dimensional plane (yð0Þ; _yð0Þ) are shown in Fig. 9 for V equal to

15, 30 and 45m/s, respectively. In the three cases, the domains of interest S in the y direction were set to be (�4.5, 4.5),

(�1.3, 1.3) and (�3, 3), while the cell sizes are 0.1, 0.05 and 0.1, respectively. Note that in the first two cases, the size of

Q in the y direction is larger than that of Sðy \ SÞ: To prove the results in Fig. 8 and 9, the phase portraits of the

torsional motion for V ¼ 15 and 45m/s are shown in Fig. 10. The points with circles (�; �; , �) in Fig. 9 are selected

as initial values to display different steady motions successively: (a) damped stable motion; (b) symmetrical LCO; (c)

periodic motion with period 2; and (d) periodic motion of period 7. To display the steady state orbits clearly, the

transient motions are omitted in (c) and (d).
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From Fig. 8, we know that chaotic motion happens when the wing speed V is between 47–51m/s under some initial

conditions. Before the occurrence of chaotic motion, the motion at V ¼ 46m=s seems to be of period 3, but also with

some quasiperiodic character, as shown in Fig. 11.
4.2. The bifurcation diagrams

Bifurcation diagrams are an important tool for characterizing the dynamics of nonlinear systems over a broad range

of the system parameters. Two algorithms are often used to calculate the bifurcation diagrams: the brute-force

algorithm and the continuation method (Parker and Chua, 1989). Calculation of the Frechet derivative is needed in

using the continuation method. So, the method cannot be used for the nonsmooth dynamical system like that of Eq. (7).

The brute-force algorithm is simple and can tackle the problem in a straightforward manner. But because it is hard to
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Fig. 12. The bifurcation diagrams of torsional angle (k ¼ 0:1) for: (a) D_y ¼ 0; (b) D_y ¼ �0:1; (c) D_y ¼ �0:3; (d) D_y ¼ �0:5:
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predict whether the steady state solutions have been achieved, the number of iterations of the simulation should be set

large enough for all control parameter values over the mentioned range. So the brute-force algorithm is often time-

consuming and inefficient. In addition, the enhancement by using the Newton–Raphson techniques to find steady state

solutions cannot be applied for nonsmooth dynamical systems. However, the proposed CM method can be used to

obtain bifurcation diagrams efficiently, because steady state motion can be recognized immediately. The bifurcation

diagrams for the torsional displacement as a function of the wing velocity V are calculated and shown in Fig. 12.

Generally, to reduce the duration of the transient, the final condition in the steady state of the kth simulation is used as

the initial condition for the (k+1)th simulation in simulating a Poincaré map over the control parameter range. Because

we are interested in the effect of disturbances on the aeroelastic behavior of the system over a broad range of wing

speed, a small disturbance D_y was added to the final value of _y at each velocity, and (_yþ D_y) was taken as the initial

condition in the _y direction for determining the response in the next augmented velocity. The adding of D_y represents an
abrupt disturbance to the aeroelastic system, which brings an instantaneous velocity change in the y direction; D_y is

equal to 0, –0.1, –0.3 and –0.5, respectively, in Fig. 12.

Fig. 12(a) shows that asymmetrical LCOs exist over the velocity range 26.2oVo43m/s, before entering the chaotic

regime. In that velocity range, the centers of the LCOs remain unchanged. But when small disturbances, say D_y ¼ �0:1;
are added, the LCOs change their centers from y ¼ �1 to y ¼ þ1; or vice versa, as the velocity exceeds 38m/s

approximately. As the level of disturbance is increased, the changes of the LCO centers happen at lower and lower

velocities. The changes are shown clearly in Fig. 12(d) over the velocity range 30oVo30.5m/s. Large disturbances, say

D_y ¼ �0:5; can even cause diverging of the motion before the chaotic regime is entered, as shown in Fig. 12(d).

4.3. Comparisons

Because of the introduction of the MTP procedure, the domains of attraction of the system can always be correctly

determined, no matter whether the transient trajectory leaves S temporarily or not during simulations. Such an

advantage is especially important when integrations start off from points outside of S, because the size of the initial

condition analysis region Q can be set different from that of the domain of interest S. Otherwise, some points inside but

near the border of the domain of attraction of a specific kind of motion could be wrongly determined. For example,

using a Poincaré-like simple cell mapping (PLSCM) method without trajectory pursuit process for V ¼ 15 and 30m/s

(k ¼ 0:1), respectively, would result in the domains of LCOs as shown in Fig. 13. One finds that the size of the domains
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Fig. 14. The trajectory starting off from the initial point ‘‘+’’ was determined as a divergent one in Fig. 13(b) because the first

mapping point on S is out of the S.

Fig. 13. Domains of attraction for torsion velocity versus torsion angle obtained by use of the PLSCM method without trajectory

pursuing process (k ¼ 0:1) for: (a) V ¼ 15m=s; (b) V ¼ 30m=s:
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of LCOs in Fig. 13 is smaller than those in Fig. 9. Some points were wrongly determined to be divergent (sink

cells), since the trajectory starting off from them intersect with S (resulting in mapping points) but outside S, as shown

in Fig. 14.

The proposed CM method results in further reduction of the memory requirements and in improvement of the

accuracy of the calculations, comparing to that of the PLSCM and PLICM methods. On the other hand, it is obvious

that the computer resources needed for the Poincaré-type cell techniques, such as the PLSCM, PLICM and the

proposed CM method, are much smaller than those required by the SCM and ICM methods. To illustrate the efficiency

of the proposed CM method, direct numerical integrations of Eq. (7) were carried out to yield domains of attraction for

V ¼ 15 and 45m/s (k ¼ 0:1). As expected, the results obtained by direct numerical integration are the same to what

presented in Figs. 9(a) and (c). All calculations in this paper were performed on a PC with Pentium III CPU at

733MHz, and by use of the computing software MATLAB. The function ODE23S was found suitable for integration

of Eqs. (7). In obtaining the domain of attraction shown by Fig. 9(a) using the direct numerical integration, the number

of 150 cycles of phase trajectory was found to be an adequate duration to achieve a steady state periodic solution from

each initial condition. But only the output data among the last 20 cycles were recorded and used to determine the limit

cycle to which the initial point is attracted. For most initial points, calculation over 150 cycles of phase trajectory is

obviously too long to acquire the steady state solutions. Take _yð0Þ ¼ �2:45 and _yð0Þ ¼ �0:425 for example; 24.88 CPU
seconds were required to complete the calculation. But in fact it needed only 6.65 CPU seconds approximately to

achieve the periodic solution. To obtain Fig. 9(a), the direct numerical integration required 211 CPU minutes. Using the

proposed CM method, only 14 CPU minutes was required; i.e., the proposed method is 15 times faster than the direct

numerical integration.

In obtaining the domain of attraction shown in Fig. 9(c) using the direct numerical integration, the number of 90

cycles of phase trajectory was found to be adequate to achieve a periodic solution (of period 2, 3 or 7) from each initial

condition, except the ‘‘sink cells’’. For the latter case, the simulation stopped as soon as _y was found greater than 15 and
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the initial point was then believed to be of a ‘‘sink’’. Calculations showed that usually only 5–7 cycles were needed to

satisfy the ‘‘stop’’ condition when starting off the calculation from a ‘‘sink’’ initial point. As a result, constructing Fig.

9(c) requires only 8.2 CPU minutes using the direct numerical integration. In consideration of using 3.7 CPU minutes,

the proposed CM method is still faster, though only 2.2 times in this case.
5. Conclusion

By introducing the ‘‘mapping trajectory pursuit’’ (MTP) technique to the cell mapping method on spatial Poincaré

sections, both the amount of cells and the computational time can be greatly reduced. The global dynamic properties of

all cells in analysis sequences can accurately be determined. The definition of the initial condition analysis region makes

the method especially appropriate for predicting the stability boundary as a function of initial conditions (or domains of

attraction).

Using the improved method, a binary aeroelastic system with bilinear structural nonlinearity in the y direction was

investigated. Different types of motions dependent of initial conditions, including damped stable motion, limit cycle

oscillation (LCO), complicated periodic motion, chaotic motion and divergent flutter, were determined for the

aeroelastic system with a certain degree of bilinear structural nonlinearity. The results agreed well with the stability

analysis. The bifurcation diagrams obtained by the proposed method show that under the influence of disturbances in

the torsional direction, the center of LCOs jumps between the positive and negative equilibrium points, as the wing

speed is increased. Larger disturbances cause the motion to diverge at rather low wing speeds. In comparison with the

direct numerical integration, the proposed CM method appears to be efficient in revealing the global behaviour of high

order nonlinear dynamical systems.
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